COLLEGE REVIEW MATH **SECTION 3C**

Time to check your memories.

Do you remember how to graph linear equations? How about absolute values? Quadratics? Let's find out.

GRAPHING INEQUALITIES

Find the slope and y-intercept for each example, and then graph it. LINEAR:

ABSOLUTE VALUES:

Find the vertex for each problem, and then graph it.

3) y = |x + 2| - 3

vertex = (-2, -3)

vertex = (0, 2)

4) $y-2 = -\frac{1}{2} |x|$ $y = -\frac{1}{2} |x| + 2$

<u>OUADRATICS</u> : Find the vertex (using "graphing" form or the formula; $x = \frac{-b}{2a}$), then graph it.							
5)	$y = 2(x - 5)^2$ -	- 1 x 5 6 7	y -1 1 7	6)	$y = -x^2 - 6x - 5$		
	vertex = $(5,$	-1)			vertex = $(-3, 4)$	<u> </u>	<u>y</u> 4
	ESTION? IF TH	E TITLE OF T vhy are all 6 gr	THIS S raphs v	SECTION (3-3) IS we did incorrect?	POLYNOMIAL I	-3 -2 -1	4 3 0
			They need to be shaded with the possibility of a dashed line as well.				
Let's fix 'em. Change each problem to							
1)	$2y \leq 3x - 8$		2)	x - 4y - 20 < 0	3)	y > x + 2 - 3	
	Solid line, shad below.	le		-4y < -x - 20 y > x/4 + 5 Dashed line, shade above.		Dashed line, shade above.	
4)	$y-2 \ge -\frac{1}{2} \mid x$	ς	5)	$y \le 2(x-5)^2 -$	1 6)	$y < -x^2 - 6x - 5$	
	Solid line, shad above.	le		Solid line, shade below (or outside of the U).	e	Dashed line, shade below (or inside of the U).	

<u>NEW ONES:</u> Compound inequalities.

First, see if you remember how to graph a constant function.

1) Graph y = 3 and y = -2 on the same grid

"y"-only equations produce horizontal lines.

- 2) Solve |x 1| > 3 like you normally would, then graph it.

3) Solve (or set up) $|y| \le 1$, then graph it.

 $y \le 1$ and $y \ge -1$

SYSTEMS OF INEQUALITIES:

Examples:

- 1) Graph each inequality like you normally would.
- 2) Shade each graph like you normally would.
- 3) Find where the shades regions *intersect*!

1) y > -3x + 2y > x - 3 The area where the shaded regions intersect is the solution. The remaining three graphs, I will only show that region.

 $\begin{array}{ll} \textbf{3)} & -4 \leq x \leq -2 \\ & 0 \leq y \leq 1 \end{array}$

