COLLEGE REVIEW MATH SECTION 3C

Time to check your memories.

Do you remember how to graph linear equations? How about absolute values? Quadratics? Let's find out.
LINEAR: Find the slope and y-intercept for each example, and then graph it.

1) $2 y=3 x-8$
$y=3 / 2 x-4$
slope $=\ldots 3 / 2$
$y-$ int $=\ldots-4$

2) $x-4 y-20=0$

$$
\begin{aligned}
& -4 y=-x-20 \\
& y=x / 4+5
\end{aligned}
$$

$$
\text { slope }=\quad 1 / 4
$$

$$
y \text {-int }=\quad 5
$$

ABSOLUTE VALUES: Find the vertex for each problem, and then graph it.
3) $y=|x+2|-3$
vertex $=\underline{(-2,-3)}$

4)

$$
y-2=-\frac{1}{2}|x| \quad y=-\frac{1}{2}|x|+2
$$

$$
\text { vertex }=(0,2)
$$

QUADRATICS: Find the vertex (using "graphing" form or the formula; $x=\frac{-b}{2 a}$), then graph it.
5) $y=2(x-5)^{2}-1$

6) $y=-x^{2}-6 x-5$

$$
\begin{aligned}
\mathrm{x} & =-(-6) / 2(-1) \\
& =6 /-2 \\
& =-3
\end{aligned}
$$

QUESTION? IF THE TITLE OF THIS SECTION (3-3) IS POLYNOMIAL INEQUALITIES IN TWO VARIABLES, then why are all 6 graphs we did incorrect?

They need to be shaded with the possibility of a dashed line as well.
Let's fix 'em. Change each problem to...

1) $2 y \leq 3 x-8$
Solid line, shade below.
2) $x-4 y-20<0$
$-4 y<-x-20$ $y>x / 4+5$ Dashed line, shade above.
3) $y-2 \geq-\frac{1}{2}|x|$

Solid line, shade above.
5) $y \leq 2(x-5)^{2}-1$

Solid line, shade below (or outside of the U).
3) $y>|x+2|-3$

Dashed line, shade above.
6) $y<-x^{2}-6 x-5$

Dashed line, shade below (or inside of the U).

NEW ONES: Compound inequalities.
First, see if you remember how to graph a constant function.

1) Graph $y=3$ and $y=-2$ on the same grid
" y "-only equations produce horizontal lines.

2) Solve $|x-1|>3$ like you normally would, then graph it.

$$
\begin{array}{ccc}
x-1>3 & \text { or } & x-1<-3 \\
x>4 & \text { or } & x<-2 \\
x \text {-only: } & \text { vertical lines }
\end{array}
$$

3) \quad Solve (or set up) $|y| \leq 1$, then graph it.

$$
y \leq 1 \text { and } y \geq-1
$$

Examples:

1) Graph each inequality like you normally would.
2) Shade each graph like you normally would.
3) Find where the shades regions intersect!

4)

$$
\begin{aligned}
& -4 \leq x \leq-2 \\
& 0 \leq y \leq 1
\end{aligned}
$$

2)

$$
\begin{aligned}
& y \geq 2 x^{2}-8 x+3 \\
& y<-x^{2}+2 x+3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}=-(-8) / 2(2)=2 \\
& \text { plug in: } \mathrm{y}=-5 \quad \mathrm{~V}(2,-5)
\end{aligned}
$$

$$
x=-2 / 2(-1)=1
$$

$$
\text { plug in: } \mathrm{y}=4 \quad \mathrm{~V}(1,4)
$$

4) $y \geq|x+1|-4$

$$
y \leq-(x-1)^{2}+2
$$

$$
1-y>3 x
$$

$$
\begin{aligned}
& 1-y>3 x \\
& -y>3 x-1 \\
& y<-3 x+1 \\
& \hline
\end{aligned}
$$

