TRANSFORMATIONS

SECTION 4D

TRANSLATING GRAPHS (left, right, up or down)

If $g(x)$ is shown below, determine the graph for
a) $g(x)+3$
b) $\mathrm{g}(\mathrm{x})-2$
c) $g(x+4)$
d) $g(x-3)$

SECTION 4-3 \& 4-4

Reflections and Transformations and Translations to try: If $f(x)$ is shown below...

1) Find $f\left(\frac{1}{2} x\right)$
2) Find $2 f(x)$
3) Find $-f(x)$
4) Find $f(-x)$
5) \quad Find $|f(x)|$
6) Find $f(x)-3$
7) Find $f(x+4)$
8) Find $f(-2 x-1)$

COORDINATES

Use the x / y-chart to the right to rewrite the coordinates for all the scenarios to follow.
Remember, outside affects the y and inside
affects the x. y 's do what you'd expect while x^{\prime} s do the opposite. Have fun!

$f(x)=\quad$| x | y |
| :---: | :---: |
| 3 | -8 |
| 0 | 1 |
| -2 | -7 |
| -5 | 12 |

1) $\quad-f(x)$

x	y
3	8
0	-1
-2	7
-5	-12

2) $f(-x)$

x	y
-3	-8
0	1
2	-7
5	12

3) $\quad|f(x)|$

x	y
3	8
0	1
-2	7
-5	12

4) $y=x$ or $f(y)$

x	y
-8	3
1	0
-7	-2
12	-5

5) $\quad 3 f(x)$

x	y
3	-24
0	3
-2	-21
-5	36

6) $\quad f\left(\frac{1}{2} x\right)$

x	y
6	-8
0	1
-4	-7
-10	12

7) $f(x)+6$

x	y
3	-2
0	7
-2	-1
-5	18

8) $\quad f(x+5)$

x	y
-2	-8
-5	1
-7	-7
-10	12

9) $-2 f(x)$

x	y
3	16
0	-2
-2	14
-5	-24

BONUS ROUND
10) $f(-x)+1$

x	y
-3	-7
0	2
2	-6
5	13

11) $\frac{1}{2} f(x+9)$

x	y
-6	-4
-9	0.5
-11	-3.5
-14	6

12) $-2 f(x)+4$

x	y
3	20
0	2
-2	18
-5	-20

PERIOD (periodic functions) AND AMPLITUDE

Period $=$ \qquad

Find $f(1000)=f(4)=1$
Draw $|f(x)|$ shown above in red

Amplitude = \qquad
$f(-999)=f(-3)=0$
Draw -f(x) reflects over x-axis
$f(-331)=\underline{f(-1)=2}$
Draw $\frac{1}{2} f(x)+4 \begin{aligned} & \text { shrinks vert. } \\ & \begin{array}{l}\text { moves up } 4\end{array}\end{aligned}$

