
COLLEGE REVIEW MATH

TRANSFORMATIONS

SECTION 4D

New coordinates for 2f(x)

Х	у
-4	-4
-3	-2
-2	0
-1	2
0	4
etc.	etc.

(1) STRETCHING *OR* SHRINKING

Graph for 2f(x) is above in red.

f(-4) = -2; (-4,-2)

f(-3) = -1; (-3,-1)

f(-2) = 0 (-2, 0)

f(-1) = 1 (-1, 1)

 $f(0) = 2 \qquad (0, 2)$

f(1) = 1 (1, 1)

f(2) = 0 (2, 0)

f(3) = -1 (3, -1)

f(4) = -2 (4, -2)

f(5) = -1 (5, -1)

f(6) = 0 (6, 0)

f(7) = 1 (7, 1)

7, 7

f(8) = 2 (8, 2)

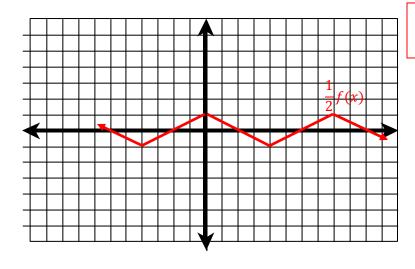
Use the coordinates you listed to come up with a new set of

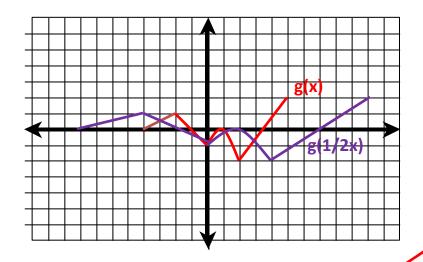
come up with a new set of

coordinates for 2f(x). Then graph

the new coordinates to see what

happens to the graph.


Conclusion: the graph was stretched vertically.


Use the grid below to

graph $\frac{1}{2}$ **f(x)**

Attempt to do so without relisting the coordinates.

Conclusion: the graph was shrunk vertically.

x	у
-4	1
-2	0
0	-1
2	0
4	-2
7	

2

$$g(-4) = 0;$$
 $(-4,0)$

$$g(-2) = 1;$$
 $(-2,1)$

$$g(-1) = 0;$$
 $(-1, 0)$

$$g(0) = -1;$$
 (0, -1)

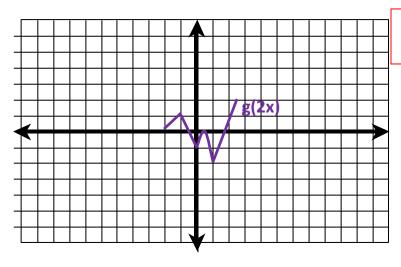
$$g(1) = 0;$$
 (1, 0)

$$g(2) = -2;$$
 (2, -2)

$$g(4) = 1;$$
 (4, 1)

Graph for g(1/2x) is above in purple.

Use the coordinates you listed to come up with a new set of


coordinates for $\mathbf{g}(\frac{1}{2}\mathbf{x})$. Then

graph the new coordinates to see what happens to the graph.

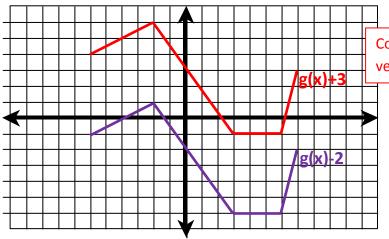
Conclusion: the graph was stretched horizontally.

Use the grid below to graph **g(2x).** Attempt to so without relisting the coordinates.

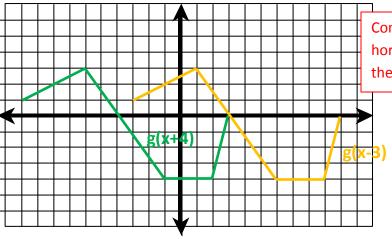
Conclusion: the graph was shrunk horizontally.

TRANSLATING GRAPHS (left, right, up or down)

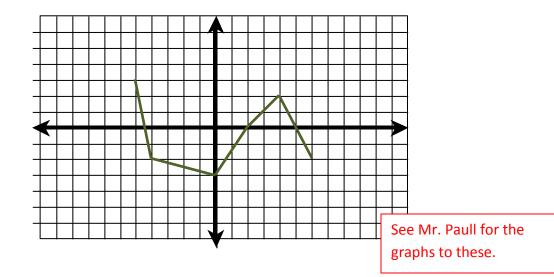
If g(x) is shown below, determine the graph for


a)
$$g(x) + 3$$

b)
$$g(x) - 2$$


c)
$$g(x + 4)$$

d)
$$g(x - 3)$$


Conclusion: the graphs moved vertically that many units.

Conclusion: the graphs moved horizontally that many units (in the opposite direction).

SECTION 4-3 & 4-4

Reflections and Transformations and Translations to try: If f(x) is shown below...

1) Find $f\left(\frac{1}{2}x\right)$

2) Find 2f(x)

3) Find -f(x)

4) Find f(-x)

5) Find |f(x)|

6) Find f(x)-3

7) Find f(x+4)

8) Find f(-2x-1)

COORDINATES

Use the x/y-chart to the right to rewrite the coordinates for all the scenarios to follow. Remember, outside affects the y and inside affects the x. y's do what you'd expect while x's do the opposite. Have fun!

f(x) =	х	у
	3	-8
	0	1
	-2	-7
	-5	12
		J

-f(x) 1)

,		
	Χ	У
	3	8
	0	-1
	-2	7
	-5	-12

2)

3)

4) y = x or f(y)

х	У
-8	3
1	0
-7	-2
12	-5

5)

3f(x)

6)

7) f(x) + 6

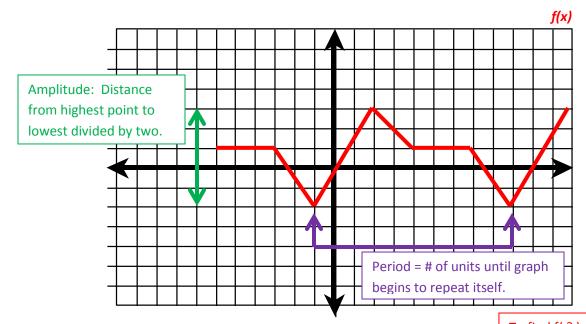
) + 0	
X	У
3	-2
0	7
-2	-1
-5	18

8)

9)

BONUS ROUND

х	У
-3	-7
0	2
2	-6
5	13


11)

12)

-20

-2f(x) + 4

PERIOD (periodic functions) AND AMPLITUDE

Period = <u>10</u>

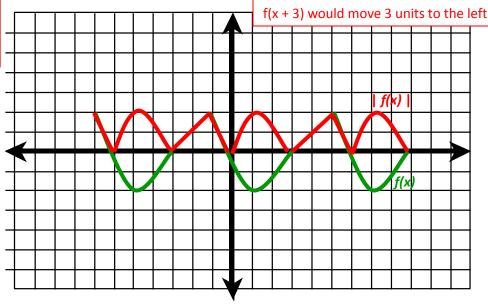
Amplitude = <u>2.5</u>

To find f(?): Divide? by the period, then use the remainder to locate it on the graph.

Find
$$f(25) = \frac{f(5) = 1}{}$$

$$f(-25) = f(-5) = 1$$

$$f(102) = f(2) = 3$$


Draw 2f(x)

Draw $f(\frac{1}{2}x)$

Draw f(x + 3)

25 ÷ 10 has a remainder of 5. Find f(5) on the graph.

f(1/2x) would "stretch" horizontally. f(x + 3) would move 3 units to the left.

Period = ____6

Amplitude = _____2

Find f(1000) = f(4) = 1

f(-999) = f(-3) = 0

f(-331) = f(-1) = 2

Draw |f(x)| shown above in red

Draw -f(x) reflects over x-axis

Draw $\frac{1}{2}f(x) + 4$ shrinks vert. moves up 4