SECTION 6A

EQUATIONS OF CIRCLES

Given the radius and center of a circle as in the one shown to the right, we can find its equation using the distance formula Assume PC = 5

$$\sqrt{(x-2)^2 + (y-4)^2} = 5$$

by squaring both sides
$$(x-2)^2 + (y-4)^2 = 25$$

or the general form;

Examples:

Determine the center and radius of each circle whose equation is given.

1)
$$x^{2} + y^{2} = 81$$

 $(x + 0)^{2} + (y + 0)^{2} = 9^{2}$
 $C = (0, 0);$ $r = 9$
2) $(x + 5)^{2} + (y + 0)^{2} = 2^{2}$
 $C = (-5, 0);$ $r = 2$
3) $x^{2} + (y - 9)^{2} = 45$
 $(x + 0)^{2} + (y - 9) = (\sqrt{45})^{2}$
 $C = (0, 0);$ $r = \sqrt{45}$
 $= 3\sqrt{5}$

Write an equation for the circle described.

- 1) The center is (7, -6) and radius = 12 (x - 7)² + (y + 6)² = 12² (x - 7)² + (y + 6)² = 144 (x + 1)² + (y + 0)² = ($\sqrt{11}$)² (x + 1)² + y² = 11
- 3) The center is (-3, -2) and the circle passes through the point (1, 3)

$(x+3)^2 + (y+2)^2 = r^2$	$(1+3)^2 + (3+2)^2 = r^2$	$r^2 = 41$
Sub in (1, 3) for x & y.	$16 + 25 = r^2$	Answer: $(x + 3)^2 + (y + 2)^2 = 41$

4) The endpoints of the diameter are (-5, 0) and (2, 5) Use the midpt. formula $\left(\frac{-5+2}{2}, \frac{0+5}{2}\right) = (-1.5, 2.5)$ $(x + 1.5)^2 + (y - 2.5)^2 = r^2$, sub in either point. $(-5 + 1.5)^2 + (0 - 2.5)^2 = r^2$ $18.5 = r^2$ Answer: $(x + 1.5)^2 + (y - 2.5)^2 = 18.5$

When is it a good idea to draw the object? (ALMOST ALWAYS)

5) The center is (3, 11) and the circle is tangent to the line y = 8

A line tangent to a circle is always perpendicular to the center, so the radius is just the distance (vertically) from y = 8 to the point (3, 11) or 3. Answer: $(x - 3)^2 + (y - 11)^2 = 9$

MANIPULATING EQUATIONS

Do you remember how to complete the square?

a)
$$x^2 + 6x + 9$$
 b) $y^2 - 14y + 49$
Take 1/2 of the middle term (6 or -14), then square it.
What would be significant about putting these problems in
perfect square form? When you factor them, they look
like ()² which appears in most
circle equations.

Examples:

Write each equation in center-radius form. $(x - h)^2 + (y - k)^2 = r^2$

1)
$$x^{2} + y^{2} + 10y - 4x = 10$$

 $x^{2} - 4x + y^{2} + 10y = 10$
 $x^{2} - 4x + 4 + y^{2} + 10y + 25 = 10$
 $(x - 2)(x - 2) + (y + 5)(y + 5) = 39$
 $(x - 2)^{2} + (y + 5)^{2} = 39$
2) $x^{2} - 14x + y^{2} = 1 - x^{2}$
 $(x - 7)(x - 7) + y^{2} = 50$
2) $x^{2} + 12x + y^{2} + 5y - 5y - 7 + y^{2} = 50$
2) $x^{2} + 12x + 36 + y^{2} + 5y + 6.25 = -7 + 42.25$
 $(x - 7)(x - 7) + y^{2} = 50$
2) $x^{2} + 2y^{2} - 16x - 8y = 2$
3) $x^{2} + y^{2} + 12x + 5y + 7 = 0$
2) $x^{2} + 12x + 36 + y^{2} + 5y + 6.25 = -7 + 42.25$
 $(x - 7)^{2} + y^{2} = 50$
2) $3y^{2} + 3x^{2} - 18y + 3x - 5 = 0$
2) $3y^{2} + 3x^{2} - 18y + 3x - 5 = 0$
2) $3y^{2} + 3x^{2} - 18y + 3x - 5 = 0$
2) $y^{2} + x^{2} - 6y + x - 5/3 = 0 + x^{2} + x^{2} + y^{2} - 6y + x - 5/3 = 0 + x^{2} + x^{2} + y^{2} - 6y + y^{2} + y^{2} - 6y + y^{2} = 5/3 + 1/4 + 9 + y^{2} + (y - 2)^{2} = 21$
2) $x^{2} + x^{2} + 1/4 + y^{2} - 6y + 9 = 5/3 + 1/4 + 9 + (x + 1/2)^{2} + (y - 3)^{2} = 131/12$

Div. by (3):
$$y^2 + x^2 - 6y + x - 5/3 = 0$$

 $x^2 + x + y^2 - 6y = 5/3$
 $x^2 + x + 1/4 + y^2 - 6y + 9 = 5/3 + 1/4 + 9$
 $(x + 1/2)^2 + (y - 3)^2 = 131/12$

SOLVING SYSTEMS OF EQUATIONS

Do you remember how to solve a system of equations? Find where these two lines intersect: x - y = 93x + 2y = 2Substitution method: solve for x (top equation): x = y + 9Substitute (y + 9) in for x (bottom equation): 3(y + 9) + 2y = 2Sub y = -5 back into either Solve for y: 3y + 27 + 2y = 25y = -25original equation: x - (-5) = 9y = -5 $\mathbf{x} = \mathbf{4}$ Answer: (4, -5)

Examples:

Find the points of intersection. If the graphs are tangent or do not intersect state so.

1) $y = 2x - 2$ and	2) $y + 3x = 10$ and $y = -3x + 10$	3) $y = 2x$ and $2x = 2x $
$x^2 + y^2 = 25$	$x^2 + y^2 = 4$	$x^2 + y^2 + 2x - 6y + 5 = 0$
$x^2 + (2x - 2)^2 = 25$	$x^2 + (-3x + 10)^2 = 4$	$x^{2} + (2x)^{2} + 2x - 6(2x) + 5 = 0$
$x^2 + (2x - 2)(2x - 2) = 25$	$x^2 + (-3x + 10)(-3x + 10) = 4$	$x^2 + 4x^2 + 2x - 12x + 5 = 0$
$x^2 + 4x^2 - 4x - 4x + 4 = 25$	$x^2 + 9x^2 - 30x - 30x + 100 = 4$	$5x^2 - 10x + 5 = 0$
$5x^2 - 8x - 21 = 0$	$10x^2 - 60x + 96 = 0$	$x^2 - 2x + 1 = 0$
<u>x = 3, x = -1.4; plug both in:</u>	$5x^2 - 30x + 48 = 0$	x = 1 (only); plug in:
y = 2(3) - 2 $y = 2(-1.4) - 2$	The solutions are imaginary.	y = 2(1) Since there is just
y = 4 $y = -4.8$	Therefore, the graphs of the line	y = 2 one answer, they
Answers: (3, 4) & (-1.4, -4.8)	and circle <i>do not intersect</i> . Ø	Answer: (1, 2) are <i>tangent</i> .