SECTION 6A

EQUATIONS OF CIRCLES
Given the radius and center of a circle as in the one shown to the right, we can find its equation using the distance formula

$$
\text { Assume PC = } 5
$$

$\sqrt{(x-2)^{2}+(y-4)^{2}}=5$
by squaring both sides

$(x-2)^{2}+(y-4)^{2}=25$
or the general form;
$(\mathbf{x}-\mathbf{h})^{2}+(\mathbf{y}-\mathbf{k})^{2}=\mathrm{r}^{2}$ where the center $=(\mathrm{h}, \mathrm{k})$ and the radius $=r$

Examples:

Determine the center and radius of each circle whose equation is given.

1) $\mathrm{x}^{2}+\mathrm{y}^{2}=81$

$(x+0)^{2}+(y+0)^{2}=9^{2}$
$C=(0,0) ; \quad r=9$

2) $(x+5)^{2}+y^{2}=4$

$$
\begin{aligned}
& (x+5)^{2}+(y+0)^{2}=2^{2} \\
& C=(-5,0) ; \quad r=2
\end{aligned}
$$

3) $x^{2}+(y-9)^{2}=45$

$$
\begin{aligned}
& (x+0)^{2}+(y-9)=(\sqrt{45})^{2} \\
& \begin{aligned}
C=(0,0) ; \quad r & =\sqrt{45} \\
& =3 \sqrt{5}
\end{aligned}
\end{aligned}
$$

Write an equation for the circle described.

1) The center is $(7,-6)$ and radius $=12$
2) $\mathrm{C}(-1,0), \mathrm{r}=\sqrt{11}$

$$
\begin{aligned}
& (x+1)^{2}+(y+0)^{2}=(\sqrt{11})^{2} \\
& (x+1)^{2}+y^{2}=11
\end{aligned}
$$

3) The center is $(-3,-2)$ and the circle passes through the point $(1,3)$
$(x+3)^{2}+(y+2)^{2}=r^{2}$
$(1+3)^{2}+(3+2)^{2}=r^{2}$
$16+25=r^{2}$
$r^{2}=41$
Sub in $(1,3)$ for $x \& y$.
Answer: $(x+3)^{2}+(y+2)^{2}=41$
4) The endpoints of the diameter are $(-5,0)$ and $(2,5) \quad(x+1.5)^{2}+(y-2.5)^{2}=r^{2}$, sub in either point.

Use the midpt. formula $\left(\frac{-5+2}{2}, \frac{0+5}{2}\right)=(-1.5,2.5)$
to find the "center"
$(-5+1.5)^{2}+(0-2.5)^{2}=r^{2}$
$18.5=r^{2} \quad$ Answer: $(x+1.5)^{2}+(y-2.5)^{2}=18.5$

When is it a good idea to draw the object? (ALMOST ALWAYS)

5) The center is $(3,11)$ and the circle is tangent to the line $y=8$

A line tangent to a circle is always perpendicular to the center, so the radius is just the distance (vertically) from $y=8$ to the point $(3,11)$ or 3 .
Answer: $(x-3)^{2}+(y-11)^{2}=9$

MANIPULATING EQUATIONS

Do you remember how to complete the square?
a) $x^{2}+6 x+\quad 9$
b) $y^{2}-14 y+49$

Take $1 / 2$ of the middle term (6 or -14), then square it.
What would be significant about putting these problems in perfect square form? When you factor them, they look like () ${ }^{2}$ which appears in most circle equations.

Examples:

Write each equation in center-radius form. $(x-h)^{2}+(y-k)^{2}=r^{2}$

1) $x^{2}+y^{2}+10 y-4 x=10$
2) $x^{2}-14 x+y^{2}=1$
3) $x^{2}+y^{2}+12 x+5 y+7=0$

$x^{2}-4 x+y^{2}+10 y$
$x^{2}-4 x+4+y^{2}+10 y+25$
$=10$
$\underline{+4+25}$
$(x-2)(x-2)+(y+5)(y+5)=39$
$(x-2)^{2}+(y+5)^{2}=39$

$x^{2}-14 x+y^{2}=1$
$x^{2}-14 x+49=1+49$
$(x-7)(x-7)+y^{2}=50$
$(x-7)^{2}+y^{2}=50$

$$
\begin{aligned}
& x^{2}+12 x+y^{2}+5 y=-7 \\
& x^{2}+12 x \underline{+36}+y^{2}+5 y \underline{+6.25}=-7 \\
& \quad(x+6)^{2}+(y+2.5)^{2}=35.25
\end{aligned}
$$

4) $2 x^{2}+2 y^{2}-16 x-8 y=2$
5) $3 y^{2}+3 x^{2}-18 y+3 x-5=0$
Div. by (3): $y^{2}+x^{2}-6 y+x-5 / 3=0$
$x^{2}+x \neq+y^{2}-6 y \ldots=5 / 3$
$x^{2}+x+1 / 4+y^{2}-6 y+9=5 / 3+1 / 4+9$
$(x+1 / 2)^{2}+(y-3)^{2}=131 / 12$

SOLVING SYSTEMS OF EQUATIONS

Do you remember how to solve a system of equations?
Find where these two lines intersect: $x-y=9$
$3 x+2 y=2$
Substitution method: solve for x (top equation): $\mathrm{x}=\mathrm{y}+9$
Substitute $(y+9)$ in for x (bottom equation): $3(y+9)+2 y=2$
Solve for $\mathrm{y}: 3 \mathrm{y}+27+2 \mathrm{y}=2 \quad$ Sub $\mathrm{y}=-5$ back into either $\begin{array}{lll}5 y=-25 & \text { original equation: } x-(-5)=9 \\ y=-5 & x=4 & \text { Answer: }(4,-5)\end{array}$
Examples:

$$
y=-5
$$

Find the points of intersection. If the graphs are tangent or do not intersect state so.

1) $y=2 x-2$ and $x^{2}+y^{2}=25$	2) $y+3 x=10$ and $y=-3 x+10$ $x^{2}+y^{2}=4$	3) $y=2 x$ and $x^{2}+y^{2}+2 x-6 y+5=0$
$\mathrm{x}^{2}+(2 \mathrm{x}-2)^{2}=25$	$\begin{aligned} & x^{2}+(-3 x+10)^{2}=4 \\ & x^{2}+(-3 x+10)(-3 x+10)=4 \\ & x^{2}+9 x^{2}-30 x-30 x+100=4 \\ & 10 x^{2}-60 x+96=0 \\ & 5 x^{2}-30 x+48=0 \end{aligned}$ The solutions are imaginary. Therefore, the graphs of the line and circle do not intersect. \varnothing	$x^{2}+(2 x)^{2}+2 x-6(2 x)+5=0$
$\mathrm{x}^{2}+(2 x-2)(2 x-2)=25$		$x^{2}+4 x^{2}+2 x-12 x+5=0$
$\mathrm{x}^{2}+4 \mathrm{x}^{2}-4 \mathrm{x}-4 \mathrm{x}+4=25$		$5 x^{2}-10 x+5=0$
$5 \mathrm{x}^{2}-8 \mathrm{x}-21=0$		$\mathrm{x}^{2}-2 \mathrm{x}+1=0$
$\underline{x}=3, x=-1.4$; plug both in:		$\underline{x}=1$ (only); plug in:
$y=2(3)-2 \quad y=2(-1.4)-2$		$y=2(1) \quad$ Since there is just
$y=4 \quad y=-4.8$		$y=2 \quad$ one answer, they
Answers: $(3,4) \&(-1.4,-4.8)$		Answer: (1,2) are tangent.

