## ELLIPSES

Generic form for ellipses (not centered at the origin):

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1 \quad \text { where } \mathrm{a}>\mathrm{b} ; \quad \text { Center }=(\mathrm{h}, \mathrm{k})
$$

Examples: (find the center, " $a$ ", " $b$ " and " $c$ ")

1) $\frac{(x+2)^{2}}{100}+\frac{(y-5)^{2}}{64}=1$

$$
\begin{aligned}
& c=(-2,5) \\
& a=10 \\
& b=\frac{8}{c} \quad \begin{array}{l}
c^{2}=a^{2}-b^{2} \\
c^{2}=100-64 \\
c^{2}=36 \\
c=6
\end{array} \\
& c=6
\end{aligned}
$$

2) $\frac{x^{2}}{20}+\frac{(y+3)^{2}}{25}=1$

$$
C=\quad(0,-3)
$$

$a=\quad 5$
$b=\quad 2 \sqrt{5}$
$\mathrm{c}=\sqrt{5}$

$$
\begin{aligned}
& c^{2}=a^{2}-b^{2} \\
& c^{2}=25-20 \\
& c^{2}=5 \\
& c=\sqrt{5}
\end{aligned}
$$

4) $9 x^{2}-18 x+16 y^{2}-64 y=71$

$$
\begin{aligned}
& \text { Div. by 9: } x^{2}-2 x \_+16 / 9 y^{2}-64 / 9 y=71 / 9 \\
& x^{2}-2 x+1+16 / 9 y^{2}-64 / 9 y=71 / 9+1 \\
& (x-1)^{2}+16 / 9 y^{2}-64 / 9 y=80 / 9 \\
& \text { Mult by } 9 / 16: \frac{9(x-1)^{2}}{16}+y^{2}-4 y \ldots=5 \\
& \frac{9(x-1)^{2}}{16}+y^{2}-4 y+4=5+4 \\
& \frac{9(x-1)^{2}}{16}+(y-2)^{2}=9 \\
& \text { Div. by } 9: \frac{(x-1)^{2}}{16}+\frac{(y-2)^{2}}{9}=1
\end{aligned}
$$

SKETCHING THE ELLISPSE: Keep in mind the center is no longer located at the origin, therefore, the major and minor axes (distances a \& b) must be counted from the center (left, right, up \& down)

Examples: Sketch \#1 \& \#2 from above. Find the coordinates for each vertex and focus.
\#1) $\mathrm{C}(-2,5)$
\#2) $C(0,-3)$
$a=10$
$a=5$
$b=8$
$b=2 \sqrt{5}$
c=6
$c=\sqrt{5}$


Directions: Use the information given
to find the equation for the ellipse described for each problem.

Examples:
$\mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$
$5^{2}=6^{2}-\mathrm{b}^{2}$
$25=36-\mathrm{b}^{2}$
$\mathrm{~b}^{2}=11$
$\frac{(x+3)^{2}}{11}+\frac{y^{2}}{36}=1$

4) $\quad$ Center $=(-6,3)$

Vertex $=(1,3)$
Tangent to the x -axis

$$
\frac{(x+6)^{2}}{49}+\frac{(y-3)^{2}}{9}=1
$$

2) Vertices are: $(4,2)$ and $(-2,2)$

