PARABOLAS

Examples (find the vertex, focus and directrix)
The vertices for \#1-3 are all $(0,0)$

1) $y=\frac{1}{16} x^{2}$
$\frac{1}{4 p}=\frac{1}{16}$ Since this equation $4 p=16$ represents a parabola $p=4 \quad$ facing up, the focus is 4 units up $(0,4)$ and directrix is 4 units down $(y=-4)$.
2) $x=-\frac{1}{20} y^{2}$
$\frac{1}{4 p}=\frac{1}{20} \quad$ Since this equation $4 p=20$ represents a parabola $p=5 \quad$ facing left, the focus is 5 units left $(-5,0)$ and directrix is 5 units right ($x=5$).
3) $x=2 y^{2}$
$\frac{1}{4 p}=\frac{2}{1} \quad$ Since this equation $8 p=1$ represents a parabola $p=1 / 8$ facing right, the focus is $1 / 8$ unit right $(1 / 8,0)$ and directrix is $1 / 8$ units left ($y=-1 / 8$).

Examples (NOT AT THE ORIGIN)

Continue to use the coefficient in front (of the parenthesis) for use in the formula (1/4p).

1) $y+2=(x-3)^{2}$

Vertex: $\quad(3,-2)$
$\frac{1}{4 p}=\frac{1}{1} \quad$ Since this equation
$4 p=1 \quad$ represents a parabola
$p=1 / 4 \quad$ facing up, the focus is
$1 / 4$ unit up $(3,-7 / 4)$ and directrix
is $1 / 4$ unit down $(y=-9 / 4)$.
2) $x-3=-\frac{1}{8}(y-1)^{2}$

Vertex: $(3,1)$
$\frac{1}{4 p}=\frac{1}{8} \quad$ Since this equation
$4 p=8$ represents a parabola $p=2$ facing left, the focus is
2 units left $(1,1)$ and directrix is 2 units right ($x=5$).
3) $y-5=-3 x^{2}$

Vertex: $(0,5)$
$\frac{1}{4 p}=\frac{3}{1} \quad$ Since this equation
$12 p=1$ represents a parabola
$p=1 / 12$ facing down, the focus is $1 / 12$ unit down ($0,59 / 12$) and directrix is $1 / 4$ unit up $(y=61 / 12)$.

Find an equation for each parabola. IT WILL be helpful to sketch the graph.

$$
\begin{array}{ll}
\text { 1) } \quad \text { Vertex }(0,0) \\
& \text { Focus }(0, .5)
\end{array}
$$

3) $\quad \begin{aligned} & \text { Vertex }(0,0) \\ & \text { directrix; } y=2\end{aligned}$

5) $\quad \operatorname{Focus}(3,-5)$ directrix; $y=1$

The parabola faces up, therefore the proper equation is: $y=\frac{1}{4 p} x^{2}$
Sub 0.5 in for p :

$$
\begin{gathered}
y=\frac{1}{4(0.5)} x^{2} \\
y=\frac{1}{2} x^{2}
\end{gathered}
$$

The parabola faces
down, therefore the
proper equation is:
$y=-\frac{1}{4 p} x^{2}$ Sub in 2.
$y=-\frac{1}{4(2)} x^{2}$
$y=-\frac{1}{8} x^{2}$

The vertex is $(3,-2)$ or half way between focus \& directrix. Sub in 3 .

$$
\begin{aligned}
y & =-\frac{1}{4(3)} x^{2} \\
y & =-\frac{1}{12} x^{2}
\end{aligned}
$$

Adjust equation for the vertex:
$y+2=-\frac{1}{12}(x-3)^{2}$
2) Focus $(-3,0)$ directrix; $x=3$

4) \quad Focus $(4.5,0)$ directrix; $x=3.5$

Homework:

pg. 240 1-8 (ignore "translations")

The vertex is $(0,0)$ since it occurs half way between the focus \& directrix.

$$
\begin{aligned}
x & =-\frac{1}{4(3)} y^{2} \\
x & =-\frac{1}{12} y^{2}
\end{aligned}
$$

The vertex is $(4,0)$ since it occurs half way between the focus \& directrix.

$$
\begin{gathered}
x=\frac{1}{4(0.5)} y^{2} \\
x=\frac{1}{2} y^{2}
\end{gathered}
$$

Since the vertex is not at the origin, the equation must be adjusted:

$$
x-4=\frac{1}{2} y^{2}
$$

