

Convert the following decimals into degree-minute-second notation

Examples:	1) 42.7°
	multiply tenths digit by 60
	= 42 + (.7)(60) = 42° 42'
Your turn:	3) 199.25°
	= 199 + (.25)(60)
	= 199° 15′

a	LIUII.				
	<u>2) 322.815°</u>				
	= 322 + (.815)(60)				
	= 322 and 48.9 minutes				
	multiply .9 by (60) to get the seconds				
	= 322° 48′ 54″				
	4) -87.205°				
	Best to just include the -87 for the				
	final answer. (.205)(60) = 12.3				
	(.3)(60) = 18				

1 radian unit is the equivalent measure of an angle

Answer: -87° 12' 18"

1 radian unit is the equivalent measure of an angle to in degrees, where the radius of the circle is equal to the arc length that it cuts.

Converting degree measurements to radians

Change each Examples:	degree I 1)	measuremei 212°	t into radians (round answers to the nearest hundredth) 2) 18°6'	Formula:
$212\left(\frac{\pi}{180}\right)$ ≈3.70 radi		alculator	$\left(18 + \frac{6}{60}\right) \left(\frac{\pi}{180}\right)$ ≈0.32 radians	$d \bullet \frac{\pi}{180}$
Your turn:	3)	307°	4) 111°55′30″	

$$307\left(\frac{\pi}{180}\right)$$
 Use a calculator...
≈5.36 radians

(111	55	30)	(π)			
	$+\frac{1}{60}$	- <u>3600</u>)	$\left(\frac{180}{180}\right)$			
≈1.95 radians						

Converting radian measurements to degrees

Change each radian measurement (in either decimal or π -form) into degrees. Round any decimal answers to nearest hundredth.

Formula:
$$r \bullet \frac{180}{\pi}$$

Coterminal angles

If the blue angle is 260°, what is the red angle?

Are there any other angles that begin on the "Initial ray" and end at the same "Terminal ray"?

Yes, every time you rotate 360° in either direction, you end up at the same terminal ray.

Find two angles, one positive and one negative, which are coterminal to the given angle.

Examples: 1) 13	5° 2)	-513° 3) 276°11′
135135 ± 360 -360 495° $-225°$ etc., you may continueto add or subt. 360 tofind more possibilities.	 -513 <u>+360</u> -153° ← could be used <u>+360</u> as neg. angle. 207° add/subt 360 for more 	Method1 Convert to decimal $276+\frac{11}{60}$, then add/subt 360 = 636.18 $\overline{3}^{\circ}$ and = -83.81 $\overline{6}^{\circ}$	Method2 (add 360) 276°11" + 360 636°11" (subt 360) 360 \rightarrow borrow 359°60" - 276°11" $- 276°11"83°49"$

Just add the sign -83°49"