

Give the exact values of each expression using reference angles.

1) cos 240°

2) sin 135°

240 - 180 = 60 (reference ∠) cos $240^{\circ} = \cos 60^{\circ}$, but signs are different, so cos $240^{\circ} = -\cos 60^{\circ}$ x-value for $60^{\circ} = 1/2$ so $-\cos 60^{\circ}$ = -1/2. And... cos $240^{\circ} = -1/2$

-60 + 360 = 300 (coterminal \angle) 360 - 300 = 60 (reference \angle) $\cos(-60^{\circ}) = \cos 60^{\circ}$. Since no sign change, x-value = 1/2, and $\cos(-60^{\circ}) = 1/2$ also.

7) $\cos 7\pi$

 $\cos 7\pi = \cos \pi$. Since the coordinates on the unit circle are (-1, 0) for π , there is no need for a reference angle. $\cos 7\pi = -1$. 180 - 135 = 45 (reference ∠)sin 135° = sin 45°, since the signs are the same, no sign change. y-value for 45° = √2/2 so sin 135° = √2/2 also. 5) cos $\frac{3\pi}{4}$ cos 3π/4 = cos 135°

180 - 135 = 45 (reference ∠) Signs for cos 135° and cos 45° are different so cos 135° = $-cos 45^\circ$. Therefore cos $3\pi/4 = -\sqrt{2}/2$

8) $\sin \frac{5\pi}{6}$

 $\cos 5\pi/6 = \cos 150^{\circ}$ 180 - 150 = 30 (reference \angle) Signs for sin 150° and sin 30° are the same so no sign change. Therefore sin $5\pi/6 = 1/2$ 3) sin 180°

Since the coordinates on the unit circle are literally (-1, 0) for 180° , there is no need for a reference angle. sin $180^{\circ} = 0$

6)
$$\sin \frac{5\pi}{3}$$

sin $5\pi/3$ = sin 300° 360 − 300 = 60 (reference ∠) Signs for sin 300° and sin 60° are different so sin 300° = -sin 60° . Therefore sin $5\pi/3 = -\sqrt{3}/2$

9) cos 510°

510 - 360 = 150 (coterminal \angle) 180 - 150 = 30 (reference \angle) Signs for cos 150° and cos 30° are different so cos $150^{\circ} = -\cos 30^{\circ}$ Therefore cos $150^{\circ} = -\sqrt{3}/2$