College Review Math
Section 9B

Formulas for the area (K) of a triangle without the height given:

$$
K=\frac{1}{2} a b \sin C \quad \text { or } \quad K=\frac{1}{2} b c \sin A \quad \text { or } \quad K=\frac{1}{2} a c \sin B
$$

Examples:

Formula:

K	$=1 / 2 a c \sin B$
K	$=1 / 2(4.75)(1.8) \sin 105$
K	$\approx 4.1 \mathrm{~cm}^{2}$

2)

Formula:	$K=1 / 2($ side $)($ side $) \sin$ (included angle)
Answer:	$K=1 / 2(26)(16) \sin 81$
	$K \approx 205.4 \mathrm{ft}^{2}$

3) \quad In $\triangle \mathrm{BEN}, \mathrm{b}=9, \mathrm{n}=7, \angle E=40^{\circ}$

$$
\begin{aligned}
& K=1 / 2 b n \sin E \\
& K=1 / 2(9)(7) \sin 40 \\
& K \approx 20.2 \text { units }^{2}
\end{aligned}
$$

4a) $\quad \operatorname{In} \triangle \mathrm{RAT}, \mathrm{a}=6, \mathrm{t}=20, \angle R=50^{\circ}$
4b) $\quad \ln \triangle \mathrm{RAT}, \mathrm{a}=6, \mathrm{t}=20, \angle R=130^{\circ}$

$K=1 / 2$ at $\sin R$	
$K=1 / 2(6)(20) \sin 50$	
$K \approx 46.0$ units 2	$K=1 / 2$ at $\sin R$
	$K=1 / 2(6)(20) \sin 130$
	$K \approx 46.0$ units 2

Examples (given the area):

1) The area of $\triangle P Q R=15$. If $p=5$ and $q=10$, find all possible measurements for $\angle R$.

$$
\begin{aligned}
& K=1 / 2 p q \sin R \\
& 15=1 / 2(5)(10) \sin R \\
& 15=25 \sin R \\
& 15 / 25=\sin R \\
& \sin ^{-1}(15 / 25)=R \quad R=36.9^{\circ}
\end{aligned}
$$

Since there is an obtuse triangle with equal area...
$180-36.9=143.1$
$R=143.1^{\circ}$ or 36.9°
2) The area of $\triangle D U M=8$. If $d=12.8$ and $m=2.5$, find all possible measurements for $\angle U$.

$$
\begin{aligned}
& K=1 / 2 d m \sin U \\
& 8=1 / 2(12.8)(2.5) \sin U \\
& 8=16 \sin U \\
& 8 / 16=\sin U \\
& \sin ^{-1}(8 / 16)=U \quad U=30^{\circ}
\end{aligned}
$$

Since there is an obtuse triangle with equal area...
$180-30=150$
$R=150^{\circ}$ or 30°

Round answers to three significant digits.
3) Find the area of the shaded region.

4) Find the area of the pentagon shown.

[^0]3)

The area of the original shaded region
would be the circle's area minus the triangle's area, or $113.1-18 \approx 95.1 \mathrm{~cm}^{2}$
4)

[^0]: See next page.

