In $\triangle \mathrm{ABC}, \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Example: During a recent drought, it has come to the attention of a river surveyor that there is a rock formation just below the surface of a frequently traveled river. While the water was so low the surveyor used a line between two telephone poles both located up river as reference angles. The closest pole had an angle of 110° in relation to the rocks, and the further 20°. If the distance between the poles was 25 m , help the surveyor locate the rock formation so that a warning buoy may be placed there at a later date.

Simpler Examples:

Find all missing measurements for $\triangle A B C$ (solve the triangle).

1) $\angle A=13^{\circ}, \angle B=75^{\circ}, b=12$

$\angle \mathrm{C}=180-(75+12)$	$=93$
$\frac{\sin 93}{\mathrm{c}}=\frac{\sin 75}{12}$	$\frac{\sin 13}{a}=\frac{\sin 75}{12}$
$\mathrm{c} \sin 75=12 \sin 93$	$\mathrm{a} \sin 75=12 \sin 13$
$\mathrm{c}=\frac{12 \sin 93}{\sin 75}$	$\mathrm{a}=\frac{12 \sin 13}{\sin 75}$
$\mathrm{c} \approx 12.4$	$\mathrm{a} \approx 2.8$

3)

$\angle B=50^{\circ}, b=10, c=8.5$

$\frac{\sin C}{8.5}=\frac{\sin 50}{10}$	$\frac{\sin 89.4}{a}=\frac{\sin 50}{10}$
$10 \sin C=8.5 \sin 50$	$a \sin 50=10 \sin 89.4$
$C=\sin ^{-1}\left(\frac{8.5 \sin 50}{10}\right)$	$a=\frac{10 \sin 89.4}{\sin 50}$
$\angle C \approx 40.6^{\circ}$	$a \approx 13.1$
$\angle A=180-(50+40.6)=89.4^{\circ}$	

2) $\angle \mathrm{A}=28^{\circ}, \angle \mathrm{C}=135^{\circ}, \mathrm{a}=2.8$

$$
\begin{array}{ll}
\angle \mathrm{B}=180-(28+135)=17 \\
\frac{\sin 17}{b}=\frac{\sin 28}{2.8} & \frac{\sin 135}{c}=\frac{\sin 28}{2.8} \\
\mathrm{~b} \sin 28=2.8 \sin 17 & \mathrm{csin} 28=2.8 \sin 135 \\
\mathrm{~b}=\frac{2.8 \sin 17}{\sin 28} & \mathrm{c}=\frac{2.8 \sin 135}{\sin 28} \\
\mathrm{~b} \approx 1.7 & \mathrm{c} \approx 4.2
\end{array}
$$

4)

$$
\angle C=6^{\circ}, a=29, c=4
$$

$$
\begin{array}{ll}
\frac{\sin A}{29}=\frac{\sin 6}{4} & \frac{\sin 124.7}{b}=\frac{\sin 6}{4} \\
4 \sin A=29 \sin 6 & b \sin 6=4 \sin 124.7 \\
A=\sin ^{-1}\left(\frac{29 \sin 6}{4}\right) & b=\frac{4 \sin 124.7}{\sin 6} \\
\angle A \approx 49.3^{\circ} & b \approx 31.5 \\
\angle B=180-(6+49.3) & =124.7^{\circ}
\end{array}
$$

5) $\triangle A B C$ is isosceles. $\angle B=22^{\circ}$ and is not a base angle. $b=33$.

C	$\angle \mathrm{A}=\angle \mathrm{C}=\frac{180-22}{2}$ $\angle \mathrm{~A}=\angle \mathrm{C}=79^{\circ}$	$\frac{\sin 79}{a}=\frac{\sin 22}{33}$ $a \sin 22=33 \sin 79$	$a=\frac{33 \sin 79}{\sin 22}$ $a=c \approx 86.5^{\circ}$

Follow up to Section 9-3

I. No solution (or no triangle possible)

Construct the following triangle: $\angle A=40^{\circ}, a=6, b=5, c=13$

Computing an answer for angle B yields an answer of 32.4°. However, using the sin law, angle C reveals an error. Here is the reason: the two smaller sides of any triangle must total to more than the $3^{\text {rd }}$ side. In this example, $6+5$ is not greater than 13. Therefore, the triangle is impossible to construct in the first place.

CONSTRUETION
II. More than one possible solution??

Construct this triangle: $\angle \mathrm{A}=40^{\circ}, \mathrm{a}=6, \mathrm{c}=7$. Which picture is the correct representation?

$\frac{\sin C}{7}=\frac{\sin 40}{6}$
Setting up the sin law for this version yields the same equation. However, it is obvious from the drawing that angle C is obtuse in this picture, but acute in the other. Both scenarios are possible. DOWN SIDE OF THE SIN LAW: given two sides, and only one angle, there are two possible triangles that can be constructed; one acute, and one obtuse. The sin law will only give you one. How do you get the other answer? Simple; just subtract from 180 . So, angle C in the above drawing:

$$
\begin{aligned}
& \angle C \approx 180-48.6 \approx 131.4^{\circ} \\
& \angle B \approx 180-(40+131.4) \approx 8.6^{\circ}
\end{aligned}
$$

