College Review
Section 9D

Warm up problem:

1) How can you find the missing side of the triangle shown below?

$$
\begin{array}{ll}
\text { Law of Sines } & \angle A=44.9^{\circ}, \angle B=117.1^{\circ} \\
\frac{\sin 18}{7}=\frac{\sin A}{16} & \frac{\sin 18}{7}=\frac{\sin 117.1}{b} \\
16 \sin 18=7 \sin \mathrm{~A} & \mathrm{~b} \sin 18=7 \sin 117.1 \\
\sin \mathrm{~A}=\frac{16 \sin 18}{7} & \mathrm{~b}=\frac{7 \sin 117.1}{\sin 18} \\
\mathrm{~A}=\sin ^{-1}\left(\frac{16 \sin 18}{7}\right) & \mathrm{b} \approx 20.2 \\
\mathrm{~A} \approx 44.9^{\circ} & \\
\hline
\end{array}
$$

2) Find the missing side of the triangle.

Examples (two sides \& one included angle)
Solve each triangle.

Law of Cosines:

$c^{2}=a^{2}+b^{2}-2 a b \cos C$

$$
\begin{array}{ll}
c^{2}=(3)^{2}+(7)^{2}-2(3)(7) \cos 85 & \\
c^{2}=9+49-42 \cos 85 & \\
c^{2}=58-42 \cos 85 & c \approx 7.4 \\
c=\sqrt{58-42 \cos 85}
\end{array}
$$

Solve each triangle.
5)

$10^{2}=5^{2}+12^{2}-2(5)(12) \cos F$
$100=25+144-120 \cos F$
$100=169-120 \operatorname{cosF}$
$-69=-120 \cos F$
69/120 = cosF
$F=\cos ^{-1}(69 / 120)$
$F \approx 54.9^{\circ}$, repeat process for O
$\mathrm{O} \approx 101^{\circ}$
$x \approx 180-(54.9+101) \approx 24.1^{\circ}$
$6^{2}=15^{2}+12.6^{2}-$
$2(15)(12.6) \operatorname{cosH}$
$36=225+158.76-$
$378 \operatorname{cosH}$
$36=383.76-378 \operatorname{cosH}$
$-347.76=-378 \operatorname{cosH}$
$347.76 / 378=\operatorname{cosH}$
$H=\cos ^{-1}(347.76 / 378)$
$H \approx 23.1^{\circ}$

Repeat for $\mathrm{E} \approx 55.4^{\circ}, \mathrm{N} \approx 180-(23.1+55.4) \approx 101.5^{\circ}$

Portions of triangles.
7) In the diagram at the right, $A B=5$, $B D=2, D C=4$ and $C A=7$. Find $A D$

Let's make it a tad more interesting shall we?

Step 1: In order to find AD, we will need to know one of the angles.
$7^{2}=5^{2}+(2+4)^{2}-2(5)(2+4) \cos B$
$49=25+36-2(5)(6) \cos B$
$49=61-60 \cos B$
$-12=-60 \cos B$
$12 / 60=\cos B$
$B=\cos ^{-1}(12 / 60)$
$B \approx 78.5^{\circ}$ see Mr. Paull as to how to store the non-rounded value in your calculator.

Step 2: Use $\triangle A B D$ to find
AD.
$x^{2}=5^{2}+2^{2}-2(5)(2) \cos 78.5$
$x^{2}=25+4-20 \cos 78.5$
$x^{2}=29-20 \cos 78.5$
$x=\sqrt{29-20 \cos 78.5}$
$x=5$

Medians of triangles.
8) Draw $\triangle A B C$ with $A B=6$,
$B C=12, A C=15$. Draw and find the length of the median from B.

Word Problem example.

Step 1: The median (in blue) BD, is shown in the drawing. To find BD, we will need to know an angle.
$12^{2}=6^{2}+15^{2}-2(6)(15) \cos A$
$144=36+225-180 \cos A$
$144=261-180 \cos A$
$-117=-180 \cos \mathrm{~A}$
$117 / 180=\cos A$
$A=\cos ^{-1}(117 / 180)$
$\mathrm{A} \approx 49.5^{\circ}$

Step 2: Use $\triangle A B D$ to find $B D$.
Since $B D$ is a median, $A D=7.5$
$x^{2}=6^{2}+7.5^{2}-2(6)(7.5) \cos 49.5$
$x^{2}=36+56.25-90 \cos 49.5$
$x^{2}=92.25-90 \cos 49.5$
$x=\sqrt{92.25-90 \cos 49.5}$
$x \approx 5.8$
9) A hunter faces directly north. He notes that if he turns to the right at a 62° angle he can see his truck which is 120 feet away. He also notices to his left at an angle of 40° is a moose standing directly beneath his tree stand which he just left, and paced off 100 feet to the point at which he now stands. How far will he have to drag the moose to his truck after he pegs it with his high powered rifle?

$$
\begin{aligned}
& \text { angle from moose-truck }=40+62=102^{\circ} \\
& x^{2}=100^{2}+120^{2}-2(100)(120) \cos 102^{\circ} \\
& x^{2}=10000+14400-24000 \cos 102 \\
& x^{2}=24400-24000 \cos 102 \\
& x=\sqrt{24400-24000 \cos 102} \\
& x \approx 171.4 \text { feet }
\end{aligned}
$$

